Bacterial translocation up-regulates GTP-cyclohydrolase I in mesenteric vasculature of cirrhotic rats.
نویسندگان
چکیده
In cirrhosis, arterial vasodilation and the associated hemodynamic disturbances are most prominent in the mesenteric circulation, and its severity has been linked to bacterial translocation (BT) and endotoxemia. Synthesis of nitric oxide (NO), the main vasodilator implicated, is dependent on the essential cofactor tetrahydrobiopterin (BH(4)). The key enzyme involved in BH(4) synthesis is GTP-cyclohydrolase I (GTPCH-I), which is stimulated by endotoxin. Therefore, we investigated GTPCH-I activity and BH(4) biosynthesis in the mesenteric vasculature of cirrhotic rats with ascites, as well as their relationship with BT and endotoxemia, serum NO, and mean arterial pressure (MAP). GTPCH-I activity and BH(4) content in mesenteric vasculature was determined by high-performance liquid chromatography. BT was assessed by standard bacteriologic culture of mesenteric lymph nodes (MLNs). Serum endotoxin was measured by a kinetic turbidimetric limulus amebocyte lysate assay, and serum NO metabolite (NOx) concentrations were assessed by chemiluminescence. BT was associated with local lymphatic and systemic appearance of endotoxin and was accompanied by increases in serum NOx levels. GTPCH-I activity and BH(4) content in mesenteric vasculature were both increased in animals with BT and correlated significantly (r = 0.69, P <.01). Both GTPCH-I activity and BH(4) levels significantly correlated with serum endotoxin and NOx levels (r = 0.69 and 0.54, 0.81 and 0.53, P <.05). MAP (a marker of systemic vasodilatation) correlated with endotoxemia (r = 0.58, P <.03) and with GTPCH-I activity (r = 0.69, P <.01). In conclusion, in cirrhotic animals BT appears to lead to endotoxemia, stimulation of GTPCH-I, increased BH(4) synthesis, and further enhancement of vascular NO production that leads to aggravation of vasodilatation.
منابع مشابه
Bacterial translocation in cirrhotic rats stimulates eNOS-derived NO production and impairs mesenteric vascular contractility.
Nitric oxide (NO) has been implicated in the arterial vasodilation and associated vascular hyporesponsiveness to vasoconstrictors observed in liver cirrhosis. Bacteria, potent activators of NO and TNF-alpha synthesis, are found in the mesenteric lymph nodes (MLNs) of ascitic cirrhotic rats. Here, we investigated the impact of bacterial translocation (BT) to MLNs on TNF-alpha production, vascula...
متن کاملBacterial translocation in cirrhotic rats. Its role in the development of spontaneous bacterial peritonitis.
Bacterial translocation occurs in ascitic cirrhotic rats, but its association with ascites infection is unknown. The aim of this study was to assess the relation between bacterial translocation and ascites infection in cirrhotic rats. Male Sprague-Dawley rats were induced to cirrhosis with intragastric CCl4. Ascitic fluid, portal and peripheral blood, mesenteric lymph nodes, liver and spleen sa...
متن کاملBacterial lipopolysaccharide down-regulates expression of GTP cyclohydrolase I feedback regulatory protein.
GTP cyclohydrolase I feedback regulatory protein (GFRP) is a 9.7-kDa protein regulating GTP cyclohydrolase I activity in dependence of tetrahydrobiopterin and phenylalanine concentrations, thus enabling stimulation of tetrahydrobiopterin biosynthesis by phenylalanine to ensure its efficient metabolism by phenylalanine hydroxylase. Here, we were interested in regulation of GFRP expression by pro...
متن کاملMicrobiome alterations are related to an imbalance of immune response and bacterial translocation in BDL-rats
Objective(s): Bacterial translocation in patients with cirrhosis is an important triggering factor for infections and mortality. In the bile duct ligation (BDL) model, crucial players of bacterial translocation are still unknown. This study aims to determine the interrelation between microbiome composition in the colon, mesenteric lymph nodes, and liver, as well as the...
متن کاملAntihypertensive therapy increases tetrahydrobiopterin levels and NO/cGMP signaling in small arteries of angiotensin II-infused hypertensive rats.
We previously reported that small mesenteric arteries from hypertensive rats have increased NOS-derived H(2)O(2) and reduced NO/cGMP signaling. We hypothesized that antihypertensive therapy lowers blood pressure through a tetrahydrobiopterin (BH(4))-dependent mechanism restoring NO/cGMP signaling and endothelial NOS (NOS3; eNOS) phosphorylation in small arteries. To test this hypothesis, small ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Hepatology
دوره 38 6 شماره
صفحات -
تاریخ انتشار 2003